- (a) An analysis must be performed to establish that the ice protection for the various components of the airplane is adequate, taking into account the various airplane operational configurations; and - (b) To verify the ice protection analysis, to check for icing anomalies, and to demonstrate that the ice protection system and its components are effective, the airplane or its components must be flight tested in the various operational configurations, in measured natural atmospheric icing conditions and, as found necessary, by one or more of the following means: - (1) Laboratory dry air or simulated icing tests, or a combination of both, of the components or models of the components. - (2) Flight dry air tests of the ice protection system as a whole, or of its individual components. - (3) Flight tests of the airplane or its components in measured simulated icing conditions. - (c) Caution information, such as an amber caution light or equivalent, must be provided to alert the flightcrew when the anti-ice or de-ice system is not functioning normally. - (d) For turbine engine powered airplanes, the ice protection provisions of this section are considered to be applicable primarily to the airframe. For the powerplant installation, certain additional provisions of subpart E of this part may be found applicable. [Amdt. 25-72, 55 FR 29785, July 20, 1990] ## §25.1421 Megaphones. If a megaphone is installed, a restraining means must be provided that is capable of restraining the megaphone when it is subjected to the ultimate inertia forces specified in $\S 25.561(b)(3)$ . [Amdt. 25-41, 42 FR 36970, July 18, 1977] ## §25.1423 Public address system. A public address system required by this chapter must— (a) Be powerable when the aircraft is in flight or stopped on the ground, after the shutdown or failure of all engines and auxiliary power units, or the disconnection or failure of all power sources dependent on their continued operation, for— - (1) A time duration of at least 10 minutes, including an aggregate time duration of at least 5 minutes of announcements made by flight and cabin crewmembers, considering all other loads which may remain powered by the same source when all other power sources are inoperative; and - (2) An additional time duration in its standby state appropriate or required for any other loads that are powered by the same source and that are essential to safety of flight or required during emergency conditions. - (b) Be capable of operation within 10 seconds by a flight attendant at those stations in the passenger compartment from which the system is accessible. - (c) Be intelligible at all passenger seats, lavatories, and flight attendant seats and work stations. - (d) Be designed so that no unused, unstowed microphone will render the system inoperative. - (e) Be capable of functioning independently of any required crewmember interphone system. - (f) Be accessible for immediate use from each of two flight crewmember stations in the pilot compartment. - (g) For each required floor-level passenger emergency exit which has an adjacent flight attendant seat, have a microphone which is readily accessible to the seated flight attendant, except that one microphone may serve more than one exit, provided the proximity of the exits allows unassisted verbal communication between seated flight attendants. [Doc. No. 26003, 58 FR 45229, Aug. 26, 1993] MISCELLANEOUS EQUIPMENT ## §25.1431 Electronic equipment. - (a) In showing compliance with §25.1309 (a) and (b) with respect to radio and electronic equipment and their installations, critical environmental conditions must be considered. - (b) Radio and electronic equipment must be supplied with power under the requirements of §25.1355(c). - (c) Radio and electronic equipment, controls, and wiring must be installed so that operation of any one unit or